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In two recent papers (Longuet-Higgins 1989u, b)  the author showed that the shape 
oscillations of bubbles can emit sound like a monopole source, at second order in the 
distortion parameter e.  In  the second paper (LH2) i t  was predicted that the emission 
would be amplified when the second harmonic frequency 2a, of the shape oscillation 
approaches the frequency w of the breathing mode. This ‘resonance’ would however 
be drastically limited by damping due to acoustic radiation and thermal diffusion. 
The predictions were confirmed by further numerical calculations in Longuet- 
Higgins ( 1990 a) .  

Ffowcs Williams & Guo (1991) have questioned the conclusions of LH2 on the 
grounds that near resonance there is a slow (secular) transfer of energy between the 
shape oscillation and the volumetric mode which tends to diminish the amplitude of 
the shape oscillation and hence falsify the perturbation analysis. They have also 
argued that the volumetric mode never grows sufficiently to produce sound of the 
stated order of magnitude. In the present paper we show that these assertions are 
unfounded. Ffowcs Williams & Guo considered only undamped oscillations. Here we 
show that when the appropriate damping is included in their analysis the secular 
transfer of energy becomes completely insignificant. The resulting pressure pulse 
(figure 5 below) is found to be essentially identical to that calculated in LH2, figure 
3. Moreover, in the initial-value problem considered in LH2, the excitation of the 
volumetric mode takes place not by a secular energy transfer but by a resonance 
during the first few cycles of the shape oscillation. This accounts for the amplification 
near resonance found in Longuet-Higgins (1990~).  Finally, it is pointed out that the 
initial energy of the shape oscillations is far greater than is required to produce the 
O ( 2 )  volume pulsations that were studied in LH2, and which were used for a 
comparison with field data. This acoustic radiation was not calculated by Ffowcs 
Williams & Guo. 

1. Introduction 
The emission of underwater sound by newly formed bubbles has been a subject of 

intense interest since a conference held in Lerici, Italy in July 1987; see Kerman 
(1988). In two recent papers (Longuet-Higgins 1989u, b)  hereinafter referred to as 
LH1 and LH2) the author pointed out that the shape oscillations of bubbles (which 
must be stimulated during bubble formation) will necessarily be accompanied by the 
emission of a monopole component of radiated sound. This component has twice the 
frequency a, of the shape oscillation, and its amplitude is initially proportional to e2, 
where e is a parameter measuring the distortion of the bubble from its equilibrium, 
spherical shape. 
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So long as the shape oscillation is not in resonance with the radial, ‘breathing 
mode’ of the bubble, that  is to say provided (2a,/w) is away from unity, where o is 
the breathing-mode frequency, there is no exchange of energy between the shape 
oscillation and the breathing mode, and the emitted sound remains of order e2. This 
is true whether or not all dissipation of energy due to thermal diffusion, acoustic 
radiation or viscous forces is neglected, or is included. I n  practice, for comparison 
with oceanic noise the inclusion of dissipation is essential; see LH2, $54-8. 

LH2 considered an initial-value problem in which the fluid was at rest and the 
initial form was the sum of pure shape oscillations, with zero difference in volume 
from the equilibrium value. Without dissipation, the amplitudes of the shape 
oscillations contain a factor ( 4 ~ ~ 2 ,  -02) in the denominator. This suggests an increase 
in the ‘response’ as 2u,/w+ 1. Obviously the theory cannot be taken as far as 
2a,/w = 1. However, with the inclusion of dissipation (see LH2 Ss4-8) the factor 
is replaced by 

[ ( 4 4  -02)2 + (4y, a,)”]’, 
where y, is a non-zero damping parameter. This makes the denominator always 
positive, and renders the theory uniformly valid in regard to the frequency a,, 
provided that yJa, B E .  

Ffowcs Williams & Guo (1991) have questioned the conclusions of LH2 on the 
basis of a purely undamped analysis of bubble oscillations. They have directed their 
comments exclusively to the undamped analysis in $3  of LH2. (This was used by the 
present author only as an introduction to  the subsequent theory of fully damped 
oscillations.) Ffowcs Williams & Guo (hereinafter referred to as FWG) point out that 
near to resonance there tends to  be a slow, secular transfer of energy between the 
initial shape oscillations and the volumetric mode. Such a periodic energy exchange, 
and its description in terms of a two-timescale analysis is quite familiar in nonlinear 
wave theory, including the theory of surface waves (Benney 1962 ; Bretherton 1964). 
FWG claim that the secular transfer vitiates the conclusions of LH2, although in 
fact $3 was not used in any of the applications to real bubbles! 

In  the present paper we examine the question of the secular transfer of energy by 
introducing appropriate damping terms into the inviscid analysis of FWG. We find 
(see $8) that this has the effect of suppressing the long-term transfer of energy to the 
volumetric mode. I n  the example considered by PWG, that of a single distortion 
mode of degree n = 6, the secular transfer of energy to the volumetric mode is found 
to be completely negligible. The amplitude and shape of the resulting pulse of sound 
(see figure 5 )  are shown to be quite unlike those given by the undamped theory 
(figure 1 a )  but closely resemble the pulse calculated in LH2, figure 3 (a) ,  for a similar 
initial-value problem. This is a strong indication that the damped theory of LH2 
is in fact correct. 

How then should one account for the increase in acoustical energy near resonance, 
found in Longuet-Higgins ( 1 9 9 0 ~  ; LH3) by numerical calculations ? The evident 
explanation is that the excitation of the volumetric mode occurs during the first few 
cycles of the shape oscillation. A discussion of the analogous case of a simple 
harmonic oscillator subject to a highly damped excitation is given in the Appendix 
to this paper. 

Ffowcs Williams & Guo have also raised doubts as to whether there was sufficient 
energy in the shape oscillations to generate significant volumetric oscillations. In  $9 
we consider the energy budget and show that even with damping included, there is 
in fact many times more energy in the shape oscillations that is required to produce 
the volumetric oscillations predicted in LH2. 
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To avoid confusion it is importani t,o distinguish between the O(e2) volume 
pulsations due to the shape oscillations, which are the subject of LH2 and LH3, and 
the O(E)  volume pulsations due to secular energy transfer (FWG). In the present 
problem the O( e2 )  volume pulsations are, paradoxically, much the greater. 

Whether the 0 ( s 2 )  volume pulsations due to the shape oscillations do in fact make 
a significant contribution to the oceanic acoustical background is a separate 
question, which must be decided by the relative effectiveness of other noise- 
generating mechanisms. Since the appropriate value of E is at present unknown, the 
answer will ultimately depend on comparisons with field observations, as discussed 
for example in LH2 and LH3. This answer will not affect the validity of the fluid 
dynamical calculations in LH2 and LH3. 

The plan of the present paper is as follows. In  @2-6 we first carry the undamped 
theory of FWG to order e2 at finite time and show that i t  is consistent with the off- 
resonant calculations of LH2. Near resonance the amplitude of the volumetric mode 
is shown actually to increase by a large factor. At resonance itself the factor is 4 8 / e ,  
that is 28 in the case E = 0.1 considered by FWG. 

In $37 and 8 we extend the previous analysis to include realistic values of the 
damping, and demonstrate its drastic effect on the shape and amplitude of the 
emitted pulse. In $9 the balance of energy is considered, and a further discussion 
follows in $10. 

2. Shape oscillations: inviscid theory 
We consider the shape oscillations of a gas bubble of equilibrium radius a in an 

unbounded liquid of density p and ambient pressure p ,  which is nearly atmospheric. 
The equations of motion and boundary conditions have been derived correct to 
second order in the shape parameter E by LH1, and have been used by FWG. We 
shall follow mainly the notation of the earlier paper, but as in FWG it will be 
convenient to choose units of length, mass and time so that a = 1 ,  p ,  = 1, p = 1. The 
inertia of the gas in the bubble is ignored. 

The radial displacement 7 of the bubble surface and the velocity potential @ for 
the motion in the water are expanded formally in the scheme 

1 ‘I = €7’ + €27’’ + . . . , 
@ = E @ ’ + € w +  ...) 

where E is a small perturbation parameter, and if t denotes the (normalized) time we 
write 7 = st (2.2) 
for the ‘slow’ time. r ,  0 and q5 denote spherical coordinates with origin at the centre 
of the sphere. 

The equations of motion and boundary condition for the linear approximation €7’ 
admit solutions in the form of normal modes: 

I 

where S,(e, $) is a spherical harmonic of degree n, Cn(7) is a complex amplitude and 
the radian frequency v,, is given by 

3y+  (37- 1 )  2T, n = 0, 1 (2.4) ( 
( n - l ) ( n + l ) ( n + 2 ) T ,  n > 0 ,  u; = 

where T denotes surface tension and 1 < y < 1.4. We shall also write u,, = w .  
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We consider an initial perturbation in which, a t  time t = 0, the fluid is a t  rest and 
the volume perturbation is zero, to  second order. Thus in the first approximation we 
assume 

7‘ = t(Coeiwt +C, eiunt)+c.c., 

where C,(O) = 0, C,(O) = 1 (2.6) 

and C.C. denotes the complex conjugate terms. 
I n  the next approximation it can be found either from LH1 or from FWG that 

7” = 7; +?I;, 

where 7; satisfies 

($ + ui )  7; = $ 3 4  - 3vw - (n - 1)  w 2 ]  C, C: ei(w-un)t - in, - dCn + Q, + c. c. (2.9) 
dr 

and where 

4&, = [ % ( ~ + 2 ) ~ ~ + ( 3 ~ - 1 ) T ] C ~ e ~ ~ ~ ~ + [ ~ w ~ + ( 3 y - i ) T ] C , C , *  

+2(2n+l )  [3wK,,,]c,c:. n + l  (2.10) 

A similar expression for 4Q, will not be needed. 

3. The monopole radiation 
Our task now is to  calculate the monopole pressure term at infinity (which is not 

done by FWG). Let us introduce the relative change in the bubble volume V from its 
equilibrium value V,, that is 

(see LH1, $5).  I n  terms of h, the pressure fluctuation p m  is given by 

a2 a2h p =-- 
r at2 

(see LH2, $6) .  The initial conditions on h are that 

h = 0 ,  %/at = O  when 

Now, correct to second order in E we have 
- 

h = i j+- v2  
a 

t = 0. 

where an overbar denotes the spherical average. So, setting a = 1, 
_ _  

h = $ + 2 ( ? j ” + q ’ 2 ) .  (3.5) 
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The O(E)  initial conditions 
- 

- 7' = 0, - = 0 (t = 0) 
at 

are already satisfied, and the O(e2)  initial conditions are 
- 

- - aY- 
9" = -$2 - = o  ( t = 0 )  

at 
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(3.6) 

(3.7) 

by (3.6). We have then to solve equation (2.8) for 7; subject to the initial conditions 
that - 

- 
(3.8) r" - -$2 ar;; = 0 ( t  = 0). 

at 0 -  

4. Exact resonance: 2gn = w 

obtains 
By equating to zero the first two terms on the right-hand side (2.8) and of (2.9) one 

dC, = iwQC,C;, Q = 3 4 n -  l ) ,  
dt 

which have the solution 
Co = iA,, C, = A , ,  (4.2) 

A ,  = - tanh [ ( P & ) i w ~ ] ,  A ,  = sech [(PQ);w7] (4.3) (3 where 

(FWG, 96). These satisfy the initial conditions A,(O) = 0, A,(1) = 1.  From (2.8) we 
have then to solve 

( & + w 2 ) d  = Qo 

subject to the initial conditions 

Hence we find 

(4.4) 

- 2 1  coswt + C.C. (4.6) 
- (8n+5) (8n+5) 

16(2n+1) (n+ 1 )  "+[ 16(2n+ 1 )  (n+ 1 )  2n+ 1 

Carrying through the calculation of p ,  indicated in $ 3  we find, correct to second 
order in E ,  

(4.7) 
4T 
r 

p ,  = -(n- 1 )  (n+ 1 )  (n+2)F(7 ) ,  
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FIQURE 1.  The shape of the emitted pressure pulse p' at distance r resulting from an initial 
distortion mode of degree n = 6. (a) E = 0.1, ( b )  E = 0.5. 
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where 

As a check we note that when t = 0, the expression for the initial pressure is 

(n - 1)2(n + 2) e2T 
(Pm)t-o = -  2n+ 1 
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(4.9) 

in agreement with LH2, equation (6.19). On the other hand as T+CQ the most 
important term in p ,  is the term in e, that is 

eTA, 
r 

-4(n-l)(n+l)(n+2)-sinwt, (4.10) 

where from (4.3) 

The proportional amplification is therefore 

(4.11) 

(4.12) 

It will be seen that the ratio of the final amplitude of the breathing mode to the 
initial amplitude of the shape oscillation is, for large n, 

(4.13) 

by (4.11). For large n, this is only a small quantity, as was noted by FWG. 
By contrast, the ratio of the corresponding pressure oscillations, from (4.12) is 

R - ~ S E - ' ,  (4.14) 

which for small values of E can be quite large. 
Figure 1 ( a )  showed a plot ofp, as a function of wt in the case n = 6 and e = 0.1 

discussed by FWG. For clean water a t  room temperature the corresponding bubble 
radius is about 0.02 cm. It can be seen how the pressure oscillation grows to its 
limiting value in about 20 cycles. 

Figure 1 ( b )  shows the corresponding pressure trace when e = 0.5. The initial and 
final values of lp,l are both greater than when e = 0.1, and the rate of amplification 
is about 5 times as fast. The final amplification, however, is not so large. 

It will be noted that we have evaluated C, only to lowest order in e. It would be 
possible to write, say, 

EC, = ec; + s2c; + . * . 
and then the secular terms in Cg could be determined by means of third-order terms 
on the right-hand side of an equation analogous to (2.8). This would give an O(e2) 
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correction to the long-term behaviour of E C ~ .  However, the initial conditions (4.5) for 
Ch would not be affected. Hence (4.14), for example, remains valid to lowest order in 
E .  Further, for positive, O( 1 )  values of the time T, since C;(O) = 0, we see that e2C;(7) 
is of order c3. Hence terms involving Ci make only an O(e3)  contribution to the 
pressure. 

In  other words, a t  all finite, positive times T the above analysis is correct to  order 
E'. For longer times it is correct to order E ,  which is all that is required. 

5. Near-resonance: 2u, /w = 1 + O(e)  
I n  the more general case of near-resonance, when (2an/w-1) is of order E ,  we 

expect a periodic exchange of energy between the two modes, the time-behaviour of 
the amplitudes Co and C, being described by elliptic functions, as in Bretherton 
(1964), for example. For the bubble oscillation problem, FWG considered the special 
case 

(5.1) 
- = ( l + E ) - l - l - e  2rn 

w 

and obtained the maximum breathing-mode amplitude as 

2e (4n- 1)' 
(Ao)max = [(' + 16(n+ 1 )  (2n+ 1) 

supposing that (A,),,, = A,(O) = 1. The corresponding pressure oscillation, to  order 
E ,  will be of amplitude given by 

(5.3) 

Now the pressure p ,  at time 1 = 0 is given by (4.9), independently of the breathing- 
mode frequency. Hence the relative pressure amplification R in this case is given by 

r l ~ m l  = E(Ao)maxW' = 4~7'(n-1) (n+ 1)  (n+2) (Ao)rnax. 

8 (n+1)  (2n+1) (4n-1)' )t-l] 
R(E) = - e (n- 1) (4n- 1) [('+16(n+1)(2n+l) (5.4) 

to lowest order in E .  This is to be compared with the amplification R(0)  a t  resonance, 
which is given by (4.12). 

I n  the more general case when 

(5.5) -- 2an-l+AE, - l < A < l  
w 

we note that the relative amplification R(he) is an analytic function of A ,  with a 
maximum when h = 0. Hence we have approximately 

R ( k )  = R(0)  + h'[R(€) -R(O)].  (5.6) 

This enables us to plot the relative amplification R as a function of 2a,/w over the 
range 

l - t < % l + c ,  w (5.7) 

as shown by the upper curves in figures 2(a, b ) .  
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FIGURE 2. The amplification factor R of the emitted pulse as a function of the ratio 2u, /w,  where 
u, is the frequency of the initial shape oscillation and w is the breathing-mode frequency, and for 
n = 6. In  each figure, the upper curve is the theory for near-resonance : lower curve is the theory 
away from resonance. (a) E = 0.1, ( b )  E = 0.5. 
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6. Away from resonance: 2a, /o  = 1 +0( 1 )  
In  the case when (2a,/o-1) is of order E O ,  that  is to say away from resonance, 

there is no transfer of energy between the modes and we may solve (2.8) and (2.9) for 
T,$ and directly, assuming C, and C, to be constants. The result is identical to the 
solution given in LH2, 93, for the inviscid case. In fact from (3.20) and (3.21) we 
have, when C, = 1 ,  Co = 0, 

where 4 4  
4 4  - 6J2 

(n- 1 )  (n+2)  (4n- 1 )  
4(2n + 1)  

P, = 

w2 3(n-1)(n+2)T. 
Qn = -=Pn + 4(2n+ 1 )  

The solution (6.1) then consists of two components, one of frequency 2a, resulting 
directly from the shape oscillation (see LH1, 9 7 )  and the other, of frequency w ,  being 
a free radial oscillation stimulated at  the initial instant. 

When t = 0, the two components are in-phase, and we have 

which is found to reduce directly to the expression (4.9). Note that the factor 
(4a2,-w2) in the denominator of P, and Q ,  disappears when they are summed. On the 
other hand when the two components are in antiphase we have 

(6.4) 

which is greater than (6.3) since it contains the factor ( 4 ~ 2 ,  - w 2 )  in the denominator 
of each term. The amplification is expressed by the ratio 

This function is shown as the lower curves in figures 2 (a ,  b) .  Both figures correspond 
to n = 6. When E = 0.1 (figure 2 a )  the off-resonance curve intersects the near- 
resonance curve from 95 fairly smoothly. Although in the transition region neither 
theory is completely valid, nevertheless the combined curves convincingly dem- 
onstrate a resonant effect. 

When E = 0.5 the two theories join less smoothly and the resonance is broader. 

7. Effects of damping 
So far we have ignored the loss of energy by damping, but from the analysis given 

in LH2, 994-6, we may expect the damping to play a dominant role in the evolution 
of the acoustical pulse. Already from figure 3 ( a )  of LH2 we can see that for a bubble 
radius of a = 0.02 cm, corresponding nearly to n = 6, the pulse has the form of a 
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damped oscillation with a decrement of 25% per cycle, as opposed to an initial 
growth of 30% per cycle predicted by the inviscid theory of figure 1 (a )  above. 

The main sources of damping, as discussed in LH2, $54 and 5, are viscosity, 
thermal diffusivity and acoustic radiation, the last two being dominant. 

For a very rough analysis we return to (2.8) and (2.9) and replace dldt  everywhere 
by (d/dt+y,), where yr is an appropriate damping coefficient. Then d/d7 must be 
replaced by (d/d7 + yi) ,  where y; = yJE. In  the case of ‘exact resonance ’, for 
example, (4.1) becomes 

Setting Co=iAo,  C, =A, (7.2) 

as before, we have 

(7.3) 

Given appropriate values of yh and yk we may solve (7.3) for A0(7) and A,(T) 
numerically, with the initial conditions Ao(0) = 0, A,(O) = 1. 

To determine appropriate values of yh we note that C0(7) will be subject to a t  least 
the radiation, viscous and thermal losses discussed in LH2, $5. Thus 

Yo = Y R + Y v + Y T H  (7.4) 

where yR, yv and yRH are given by equations (5.4), (5.5) and (5.12) of LH2. 
Numerically, when n = 6 and a = 0.01948 we find 

yo/w = 0.0316. (7.5) 

To determine y n  we note that the shape oscillation is subject to both viscous losses 
from the linear mode and to  viscous, thermal and radiation losses from the monopole, 
even when Co = 0. The first are of order E’, the second of order E ~ .  Adopting the rough 
analysis of LH2, $6, we have from equation (6.6) of LH2, 

(7.6) 

where u,, u,,& and p,, are constant coefficients, with a,, p1 representing linear ( O ( E ) )  
terms and u2,2/3, nonlinear ( O ( E ~ ) )  terms in the dissipation and the total energy 
respectively. Thus 7, is amplitude-dependent, in general, varying monotonically 
between a,/2/3, for small amplitudes and a2/4p2 for sufficiently large amplitudes. I n  
the case n = 6, E = 0.1 we find that 

0.809 < y,/w < 22.0, (7.7) 

the lower value representing the nonlinear damping. The main reason why y n  is 
generally larger than yo is because of the smaller initial energy of the shape 
oscillation. 

Inserting these values into (7.3) and carrying out the numerical computation we 
find the curves shown in figures 3 and 4. It will be seen that A ,  falls rapidly to zero, 

18-2 
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FIGURE 
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FIQURE 4. The behaviour of 4 7 )  as a function of w7/2n: when TL = 6 and E = 0.1. (a) No 
damping (cf. FWG, figure 3), ( b )  including damping. 
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under the influence of the strong damping. A ,  grows at  first but only to a maximum 
of 0.00051, less than 1 YO of its greatest value in the undamped case. It then falls to 
zero more slowly than A,. 

This behaviour contrasts strongly with the undamped case, shown in figure 3, 
which is equivalent to figure 3 of FWG. This suggested that all the energy in A ,  was 
transferred to A,. In  practice, the energy is lost by damping before any appreciable 
transfer can take place. 

8. The pressure pulse 

equation 
To complete the calculation of the acoustical pressure we now solve the damped 

(-+2y0z+w*2)7h. a 2  a = Qo 
at2 

corresponding to (4.4) where w* is a modified frequency, subject to the initial 
conditions (4.5). 

Carrying through the analysis correct to order E ,  and remembering that y / w *  is 
formally of order E ,  we obtain eventually for the pressure p ,  as r + co, 

4T 
r 

p ,  = -(n- 1) (n+ 1) (n+2)F*(t) 

as in (4.6), except that now 

e-yo t - 4n- 1 A,-@".lcosw*t 
16(n +, 1) 

F*(t) = EA,sinwt+~~ 

Thus the only difference, formally, lies in the occurrence of the damping factor e-yot 
multiplying the term in cos w*t which is independent of A,.  This term arises from the 
initial conditions (4.5) at time t = 0. 

The calculated pressure pulse p ,  is shown in figure 5, in the case n = 6, E = 0.1. The 
comparable case without damping is shown in figure 2 (a). The contrast is evident. In 
the real (damped) case, the form of p ,  is nearly a simple, exponentially damped 
sinewave corresponding to the term in e-yot in (8.3). Thus 

T 
p ,  = ~~-(n-l)(8n+l)(n+2)e-~o~cosw*t. 4r (8.4) 

Physically, this term arises mainly from the second-order (O(e2) )  'squeeze ' applied to 
the bubble by the initial shape distortion. The shape of the damped pulse is very 
similar to that calculated by LH2, figure 3(a). In that case there were several 
harmonics of comparable magnitude in the initial shape, but only the harmonic 
n = 6 was close to resonance. The transfer of energy to the breathing mode, and 
the exchange between the other shape oscillations was ignored. 

Our handling of the damping by means of (8.2) is admittedly rough. We note 
however that the effects of damping on the forcing function Q, are already taken care 
of by the damping terms in (7.3). Any third-order terms that might, in undamped 
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FIGURE 5. The calculated pressure pulse p ,  due to an initial shape distortion, with damping: 
n = 6, E = 0.1. See figure 2(a) for the same initial conditions, but without damping. 

circumstances, be present on the right-hand side of (8.3) are likely to be strongly 
damped also. In view of the rapid decay of both A ,  and A,, and the relatively small 
magnitude of the latter at all times, the third-order terms seem unlikely to be 
significant. Hence the long-term behaviour will still be given by (8.4), approximately. 

9. The energy balance 
Ffowcs Williams & Guo (1991) have claimed that the analysis of LH2 violates 

energy constraints, and that the energy of the shape oscillations is insufficient to 
maintain significant volume pulsations. We shall now examine this question. 

The total eqergy in the initial shape oscillation 7 = eS, cos a, t ,  being twice the 
kinetic energy, is 

€"; 
En = 2K 

(n+ 1 )  (2n+ 1 ) )  

to lowest order in 8.  Similarly the total energy in the breathing mode 7 = Bcoswt is 

Thus when w = 2a, we have 
E, = 2nB2w2. ( 9 4  

1 €2 - n =  E 
E, 4 ( n + 1 ) ( 2 n + l ) s '  (9.3) 

Now the amplitude B of the breathing mode is related to the pressure amplitude lp,l 
bY 
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The initial value of p ,  is given by (4.9), regardless of the subsequent damping (see 
LH2, 96). Since ui is given by (2.4) above, we have 

(n- l )s2 
4(n+ 1) (2n+ 1) 

B =  

and so from (9.3) we have initially 

E 4(n+ 1) (2n+ 1) 8 n= N -  

EO (n- 1)2s2 €2 

(9.5) 

for n % 1. This ratio is very large, being of order 800 in the example E-0.1 considered 
above. 

Without damping, we have seen that the amplitude of the breathing mode would 
ultimately increase in the ratio (4.12), so that En/Eo tends to 1 and all the energy is 
transferred to the breathing mode. 

In the real, damped case we see from figure 5 that the maximum amplitude of the 
breathing mode is about twice its initial value, so that the ratio En/Eo  is still of order 
212, or 200. Thus we see that there is more than enough energy available for the 
volumetric oscillations. Nearly all of it is dissipated by damping, principally due to 
acoustical radiation and thermal conductivity. The effective energy balance is not 
between the two types of oscillation, as claimed by FWG, but between the oscillation 
energies and their rates of dissipation. 

The shape and amplitude of the pulse in Figure 5 are altogether comparable to the 
pulse shown in figure 3(a) of LH2 in a similar case but where more than one mode 
was present. For the calculation of the real, damped pulses in figures 3 and 6 of LH2 
the author used the rough energy balance equation (6.5) of LH2 which balances the 
decrease in energy for each mode against the corresponding rate of dissipation. From 
the above it is quite clear that energy constraints were not in fact violated, as was 
claimed by FWG. We note that FWG do not refer to those parts of LH2 (most of the 
paper) in which damping was taken into account, and which were used as a basis for 
comparison with ocean noise spectra. 

10. Discussion and conclusions 
In  order to determine the effect of energy transfer between a shape oscillation and 

the fundamental ' breathing mode ', we have considered two formal initial-value 
problems, one without damping and one with damping. 

The problem without damping, studied by FWG, is somewhat academic. But the 
solution shows that although the maximum amplitude of the breathing mode is quite 
small, -0.03 times the amplitude of the initial shape oscillation, nevertheless the 
emitted pressure pulse is relatively large compared to the pulse at time t = 0. I n  fact 
the pulse is magnified by a factor of about 1/8/s,  that is about 28.3, when E = 0.1. 
Hence it can be said that a spectral resonance does indeed exist. Moreover, when the 
amplification of the pulse is studied in relation to its initial value, as in figure 2, it  
is found that the near-resonant theory of FWG is contiguous with the away-from- 
resonance theory of LH2 in which there is formally no energy exchange. 

The second, more realistic problem includes damping, as in LH2, as well as any 
resonant transfer of energy between the modes. The most striking feature is the very 
rapid decay of the shape oscillation (figure 3) and hence the negligible growth of the 
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n l w  

FIQURE 6. Relative amplitude of the long-term response of a lightly damped oscillator to a 
highly damped forcing function. 

breathing mode (figure 4). The direct contribution to the pressure pulse from the 
breathing mode is quite insignificant. The dominant contribution to the pulse comes 
from the ringing of the bubble as a result of the initial squeeze from the shape 
distortion. This produces a tone decaying exponentially a t  a comparatively low rate. 

It follows that in practice the shape of the pulse is dominated not by resonant 
energy transfer between the modes but on the contrary by the damping, which arises 
mainly from acoustic radiation and thermal diffusion. 

The initial amplitude of the pulse is of order c2T/r ,  as was noted in LH2, $6. This 
is of the same order or larger than the amplitude used in an estimate of the acoustical 
energy flux in a typical oceanic situation (LH2, $8).  The estimated acoustical energy 
is proportional to c4, and so depends strongly on the appropriate value of 6. However, 
for a given E ,  the estimates of the acoustical flux are hardly at  all affected by any 
energy exchange between the modes. 

The question arises : is the degree of damping of the shape oscillation so great that  
it becomes meaningless to speak of a 'resonance ' between it and the breathing mode ? 
To answer this, we consider in the Appendix the response z ( t )  of a simple linear 
oscillator, with natural frequency w and damping yo, to a highly damped forcing 
function of exp [i(a+iy) t ] ,  t > 0, where y % yo > 0. (When t < 0, z ( t )  is zero.) It is 
found that at large positive times t the response ( t )  tends to an exponentially damped 
sine-wave b ei(w+iyot, just as in (8.3). The ratio (bw2 /a )  is shown in figure 6 as a function 
of a / w .  It will be seen that b d / a  has a maximum a t  around a / w  = 1, so long as y / w  
< 1 ,  approximately, This is when the time constant for the forcing function is 
comparable to the period of the response. 

For applications to the ocean, where bubbles are created close to  a pressure release 
surface, the radiation damping is reduced, owing to cancellation of the sound source 
by its 'image'. The effective damping is therefore less, by a factor of order 2. Hence 
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resonant amplification will be more pronounced near the surface than in the interior 
of the fluid (bubble coalescence or splitting). However, the long-term transfer of 
energy between modes remains negligible. 

A recent calculation of the sound emitted by the shape oscillations of a near- 
surface bubble has been carried out, using relevant values of the damping (Longuet- 
Higgins 1990a). For a bubble of given initial shape, the total energy of the pulse 
was indeed shown to be augmented for those bubble-sizes such that 2aJw was 
close to 1 .  

In the light of our findings it is appropriate to review some of the stated 
conclusions of Ffowcs Williams & Guo (1991). 

First, in the Abstract of their paper and also in $8, the authors speak of ‘volume 
pulsations ’ as though they were associated solely with the radial, breathing mode of 
oscillation. We have seen, however, both in $3 onwards and also in LH1 and LH2, 
that volume pulsations are an essential accompaniment of shape oscillations at  order 
e2. Moreover, these O(e2) volume oscillations are excited first near time t = 0, before 
any resonant exchange of energy with the breathing mode can take place. The 
statement by FWG that ‘the volumetric pulsation has very small amplitude in 
comparison with that of the initial distortion ’ is thus seen not to be relevant to the 
main question, which is whether the O(e2) volume pulsations are capable of producing 
a significant contribution to the underwater sound spectrum. 

A second theme of FWG is that, in the non-dissipative theory, the scope for 
amplification of the O ( 2 )  volume pulsations near the critical frequencies when 2aJw 
x 1 is limited by a consideration of the total energy. In the inviscid case this is 
obvious, though there is indeed a tendency for the amplification of the pressure pulse 
to increase towards 2aJw = 1, even away from resonance (see figure 2a,  b ,  above) 
without violation of energy conservation. 

We assume, however, that we are primarily interested in the emission of sound by 
real bubbles, in which case the loss of energy by dissipation and radiation is the 
dominating effect. Thus, for real bubbles, equations of energy conservation became 
irrelevant, except as a remote upper bound; it is the degree of damping that is 
crucial. The statement by FWG that ‘a direct perturbation approach to this problem 
fails to conform with the principle of energy conservation’ is thus completely 
misleading. 

Moreover, it has to be emphasized that in the application of the theory to the real 
ocean that was considered in LH2, it was the fully damped theory that was used. The 
estimates were based only on the O(e2) terms, excited mainly a t  the initial instant of 
the pulses. These estimates, contained in QQ5-8 ofLH2, are now seen to be unaffected 
by the work of FWG. Remarkably, FWG do not mention these estimates, or the 
basis on which they were made, leaving the impression that they were based on an 
inviscid theory, and accordingly were too high. 

Finally we note that in this paper we have examined only one particular type of 
initial condition: an initial distortion of the bubble, with zero initial velocity. In 
practice there will be other initial conditions also. For example, in the case of noise 
from bubbles entrained by raindrops, it has been shown (Longuet-Higgins 1990b) 
that the initial inward velocity of the fluid at  the instant of bubble closure supplies 
most of the energy of oscillation. If mixed types of initial conditions apply, their 
effect will, to first order, be superposed linearly. Hence one would expect that in 
practice observed spectra of bubble noise will display peaks that are relatively less 
prominent than for the initial conditions discussed here. 

It can also be foreseen that if the amplitude of the breathing mode is initially large, 
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significant energy may be lost from the breathing mode to the shape oscillations, 
where i t  will be absorbed by the relatively high damping. In  this way the breathing 
mode may suffer an anomalously high rate of damping, at least initially. This could 
lead to a dip in the noise spectrum a t  that particular frequency. 

For the discussion of bubble noise spectra derived from oceanic field observations 
and laboratory data the reader is referred to Longuet-Higgins (1990a). 

As a referee, the author had access to the manuscript FWG prior to publication. 
This research was supported by the Office of Naval Research under Contract N00014- 
88C-0653. 

Appendix. The response of a linear oscillator to a highly damped input 
Consider the solution of the linear equation 

where y >> yo > 0, with the initial conditions 

(A 2) 
dz 
dt 

z = O ,  - = 0  when t G O .  

The substitution z = e-Yotz' reduces (A 1) to the simpler problem 

c02 ei(o+iy')r, t > 0 
d2z' 
- + w'2z' = 
dt2 

Y' = Y -Yo w'2 = 0 2  - y;, (A 4) where 

and with the same initial conditions on z' as on z. The solution when t > 0 is clearly 

the real part of the right-hand side being taken. The first term in the square brackets, 
representing the forced oscillation, decays very rapidly, and we are left with the sum 
of the two sinusoidal terms, which combine to  a sine-wave of amplitude 

cw2[P2 + (Py'+ Qa)' /w' ' ] ;  

P 2 + Q 2  
b =  3 

where P = w ' ~  + f 2  - a2, Q = 2y'a. (A7) 

Now consider the case when yo/w 4 1 and y / w  is O( 1) or greater. Then we may write 
w' = w and y' = y approximately, and b / c  becomes a function of the two variables 

( =  ( a / w ) 2  and G = ( y / w ) 2  (A 8) 

alone, that is 
b - [( 1 - G -  lJ2 + G( 1 + G + E)2 ] ;  - -  
C ( l+G--) '+4G(  ' 

Figure 6 shows b / c  as a function of u / w  = 6; for various values of y / w  = Gi. It will 
be seen that when y / w  = 1, that is, the forcing function is ' critically damped ', b / c  has 
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no positive maximum. However for y l ~  > 1 there is a maximum when E = 1 -G,  as 
may be seen by writing (A 9) in the form 

The maximum value of b l c  is thus 

l + G  ( y 2 + d ) ;  
(:)max= (c) = 2y ' 

which tends to infinity as y / w + O .  
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